Description D28CxxM50JP DC/DC converter has input voltage range 16V ~ 40V, output power of 50W, with operating temperature range of -55℃ ~ +105℃. It adopts PCB surface mount technology and is encapsulated with metal case with potting. The product weighs about 24g, with input and output isolated. It is applied in DC power supply systems to realize the isolated voltage conversion function. The module has the following characteristics. #### **Product Features** - Enable control function - 2. Fixed switching frequency - 3. Input undervoltage protection - 4. Withstands 50V surge voltage - 5. Output short-circuit protection - 6. Output over-current protection - 7. Package: $1" \times 1"$ - 8. Complies with GJB 10164-2021 "General Specification for Microcircuit Modules" # 1. Selection Guide | Product Model | Output Power
(W) | Nominal Output voltage/Current | Efficiency
(@28VDC, %/Typ.) | Max. Capacitive Load
(μF) | |---------------|---------------------|--------------------------------|--------------------------------|------------------------------| | D28C05M50JP | 50 | 5V/10.00A | 90 | 2000 | | D28C12M50JP | 50 | 12V/4.17A | 91 | 1500 | | D28C15M50JP | 50 | 15V/3.34A | 91 | 1500 | | D28C24M50JP | 50 | 24V/2.09A | 90 | 1000 | | D28C28M50JP | 50 | 28V/1.79A | 90 | 1000 | 2. Environmental Specifications | Item | Min. | Тур. | Max. | Unit | Remarks | |---|------|------|------|------|--| | Operating temperature | -55 | 25 | 105 | °C | Baseplate temperature | | Storage temperature | -55 | 25 | 125 | °C | | | Relative humidity | - | - | 95 | % | non-condensing | | Pin Soldering Resistance
Temperature | - | - | 300 | °C | Soldering time shall not exceed 10 seconds | # 3. Electrical Specifications | Input Specifi | cations | Condition | Minimum | Typical | Maximum | Unit | |--------------------|--|--------------------------|---------|---------|---------|------| | Input voltage ran | ge | Iout=0~100%Io | 16 | 28 | 40 | | | Surge Voltage | | 50ms | -0.5 | - | 50 | | | Input undervoltage | Input undervoltage voltage protection Turn-off voltage | Iout=0~100%Io | - | - | 16.0 | | | protection | | 10ut=0* = 1007810 | 13.0 | - | - | V | | Enable control | Starting voltage | Ctrl to high or floating | 3.5 | - | 12.0 | | | (DOSITIVE IODIC) | Turn-off
voltage | Ctrl to low or ground | 0 | - | 0.7 | | | No-load power co | onsumption | Vin=16V~40V no-load | - | - | 1.5 | W | | Temperature coe | fficient | Full load | - | - | 0.02 | %°C | #### **DC-DC Converters** | Output Spec | cifications | Condition | | Minimum | Typical | Maximum | Unit | |-------------------|--|--|-----------------------|--|--------------|---------|------| | | 5V | | 5V | | | ±2 | | | Output voltage | | Vin=16V~40V full load | 12V、15V、24V
、28V | - | - | ±1 | %Vo | | Output current | | Vin=16V~40V | | Refer to Sel | ection Guide | | Α | | Linear Regulation | on | Vin=16V~40V full load | | - | - | ±0.5 | % | | Current regulat | ion | Vin=28V no-load→full load | | - | - | ±0.5 | % | | | | | 5V | | | 100 | | | Ripple & Noise | | Vin=16V∼40V,0∼100%Io
BW=20MHz | 12V、15V | - | - | 120 | mV | | | | | 24V、28V | | | 150 | | | Over-voltage Pr | rotection ^{bc} | Vin=16V~40V full load | | 110 | - | 150 | %Vo | | Over-current Pr | rotection | Hiccup mode | | 110 | - | 180 | %Io | | Over-temperatu | ure protection | Housing operating temperature | | - | 125 | - | %°C | | Efficiency | | Vin=28V full load | | Refer to Selection Guide | | | % | | Trim | | Guaranteed when output is down Iout≤100%lo Guaranteed when output is up Po≤50W | | 90 | - | 110 | %Vo | | Load dynamic | overshoot/u
ndershoot | Iout:25%load→50%load→25%l | oad | - | - | ±5 | %Vo | | response | Recovery
time ^d | Iout:50%load→75%load→50%l | | - | - | 500 | μs | | Start delay time | Vin=0V→28V full load Start delay time ^e Time from power-on to the output voltage rising to 10% | | - | - | 20 | ms | | | Output rise time | | Vout rises from 10% to 90% full | load | - | - | 20 | ms | | Starting oversh | oot | Vin=16V~40V full load | | - | - | 3 | % | | Capacitive load | f | Purely resistive load test,low ESF | R capacitor,full load | Refer to Selection Guide | | | μF | | Short circuit pro | otection | Hiccup mode | | Automatic recovery after fault removal | | | | - a) When the Ctrl pin is connected to a high level (3.5V \sim 12V) or left floating, the product operates normally. When it is connected to a low level (0V \sim 0.7V), the product has no output. - b) The overvoltage protection mode is clamping mode. After the overvoltage protection is released, the output voltage test result meets the electrical characteristic requirements. - c) The parameters are guaranteed by the design and are only tested during identification and design or process changes. - d) Recovery time refers to the time from the beginning of the transition until the output voltage returns to the corresponding stable value the accuracy range. - e) The start-up delay time can be calculated either from the power supply's transition or from the time when the ctrl terminal is connected to a low level, until the output voltage rises to 10% Vout. - f) Capacitive loads do not affect the DC parameters. - Note: The above specification parameter test circuit refers to the typical application 4.2 and 4.3. | General Specifications | | Condition | Minimum | Typical | Maximum | Unit | |---|---------------|--|---------|---------|---------|------| | Insulation resistance ^g | | Add 500VDC between input and output, between input and shell, between output and shell for 10s | 100 | - | - | ΜΩ | | Switching frequency | | Full load | 220 | 260 | 300 | kHz | | - I | Input-Output | | 1500 | - | - | | | Isolation voltage ^{gh} Input-H | Input-Housing | t=1min set the leakage current to 1mA | 1500 | - | - | VDC | | Output-Housing | | | 500 | _ | - | | - g) The input leads are pins 1, 2 and 3, and the output leads are pins 4, 5, 6. During the test, the input leads need to be shorted together, and the output leads need to be shorted together; - h) Judgment criteria: the module shall be free of breakdown and arcing. | Physical characteristics | | | | |--------------------------|---------------------|--|--| | Dimension | 25.40*25.40*11.70mm | | | | Weight | 24g±5g (Type) | | | # 4. Typical Applications #### 4.1 Enable Control The function of the positive and negative enable logic is as follows: For positive logic enable, the module works normally when the control pin is connected to high level or floating, and is turned off when grounded or low level. For negative logic enable, the module works normally when the control pin is grounded or at low level, and is turned off when connected to high level or floating; The enable pin of this model is positive logic. When the enable pin is left floating (or connected to high level), the product has output. When not in use, the enable pin can be left floating; when using the enable pin, the product has no output when the enable pin is connected to the input ground (or connected to low level) by means of a switch, etc. | Switching mode | Triode control mode | Optocoupler isolation control mode | Logic gate control mode | |----------------|---------------------|------------------------------------|--------------------------| | SI Vin- | Ctrl | Ctrl Vin- | VCC
Ctrl
O
Vin- | #### **4.2 Application Diagram** Fig.1 Application Fig. 1 shows the typical application connection method of the module. The input terminals of the module power supply will have significant differences due to the length of the input source leads. In order to prevent input oscillation caused by excessively long input lines, it is recommended to add input capacitors near the input pins of the module. Similarly, an output capacitor should be added at the output end of the module: | C1 | Input capacitance: 100µF | Input capacitance: 100µF ceramic capacitor or electrolytic capacitor | | | | | |----|---|--|----|----|----|----| | | Output capacitance: The capacitance values in the table below are for ceramic capacitors. | | | | | | | C2 | Output voltage (V) | 5 | 12 | 15 | 24 | 28 | | | Value selection for C2
(µF) | 100 | 68 | 68 | 47 | 47 | | C3 | Output capacitance: 1µF ceramic capacitor | | | | | | #### 4.3 Output Ripple Voltage Test Diagram Fig.2 Schematic diagram of output ripple voltage Ripple measurement is generally measured under the condition of rated input and output, the oscilloscope bandwidth is set to 20MHz, and the oscilloscope probe with the ground clamp removed is used to measure at a distance of about 3~5cm from the output end. Note: The oscilloscope uses a bandwidth of 20MHz. | Recommend parameters | | | | | | | |----------------------|---|--|-----|--|--|--| | C1 | Requires mounting close to | Requires mounting close to the input pins of the module, recommend 100 µF ceramic capacitor or solid-state capacitor | | | | | | C2 | Ceramic capacitors with the capacitance values listed in the table below, which are required to be installed close to the output pins of the module to better reduce the output ripple voltage and improve the output characteristics of the product in high and low temperature environments. Output voltage (V) 5 12 15 24 28 Value selection for C2 (µF) 68 68 47 47 | | | | | | | С3 | 1µF ceramic capacitor | | | | | | | C4 | 10μF tantalum capacitor | or ceramic capaci | tor | | | | # **4.4 Trim Function Application Note** Fig 3: Functional application diagram of Trim Fig.4 Trim circuit (dashed box is inside the product) Trim resistance calculation formula: $$\begin{array}{c} \text{up:R}_T = \frac{aR2}{R2-a} - R3 & \text{a} = \frac{\text{Vref}}{\text{Vo'-Vref}} \cdot R3 \\ R_T = \frac{aR1}{R1-a} - R_3 & \text{a} = \frac{\text{Vo'-Vref}}{\text{Vref}} \cdot R3 \end{array}$$ RT is Trim resistance a is a custom parameter and has no actual meaning. | Model | R1(kΩ) | R2(kΩ) | R3(kΩ) | Vref(V) | |-------------|--------|--------|--------|---------| | D28C05M50JP | 7.48 | 2.49 | 4.3 | 1.25 | | D28C12M50JP | 9.49 | 2.49 | 4.3 | 2.5 | | D28C15M50JP | 12.49 | 2.49 | 4.3 | 2.5 | | D28C24M50JP | 21.5 | 2.49 | 4.3 | 2.5 | | D28C28M50JP | 25.5 | 2.49 | 4.3 | 2.5 | #### **5.Product Characteristic Curve** #### **Efficiency vs Input Voltage (Full Load)** #### D28C05M50JP Fig.5 #### Efficiency Vs Output Load (Vin = 28V) Fig.6 #### **Efficiency vs Input Voltage (Full Load)** D28C12M50JP Fig.7 Fig.8 Efficiency vs Input Voltage (Full Load) Fig.9 D28C15M50JP Fig.10 #### **Efficiency vs Input Voltage (Full Load)** D28C24M50JP Fig.11 #### Efficiency Vs Output Load (Vin = 28V) # Fig.12 Temperature Derating Curve Chart Fig.13 # 6. Dimension and Terminal Definition - First angle projection < - 2) Five-sided metal aluminum, anodized matte black - 3) All dimension in mm[inches] - 4) Pins diameter tolerance: $\pm 0.1[0.004]$ - 5) No specification for tolerance: X. X±0.5[X. XX±0.02], X. XX±0.25[X. XXX±0.01] Recommended PCB hole size NOTE: Grid size is 2.54*2.54[0.1*0.1] | No. | Symbol | Function | |-----|--------|------------------------------------| | 1 | Vin+ | Input positive end | | 2 | Vin- | Input negative terminal | | 3 | Ctrl | Enable control end | | 4 | Vout- | Negative output terminal | | 5 | Trim | Output voltage adjustment terminal | | 6 | Vout+ | Output positive terminal | Fig.14 Terminal Arrangement (Top View, Pin Up) and Appearance Dimension #### 7. Precautions - 7.1. Do not reverse the polarity of the power supply. Pay attention to the input voltage range, which is 16V ~ 40V; - 7.2. Please use wide PCB leads or thick wires between the power module and the load, and keep the line voltage drop below 2% Vo to ensure that the output voltage of the power module remains within the specified range; - 7.3. The measurement of voltage must be conducted at the root of the module terminals, eliminating the measurement errors caused by the test tooling fixtures. - 7.4. The impedance of the lead may cause output voltage oscillation or large ripple. Please make sufficient evaluation before use; - 7.5. Prevent product collision; - 7.6. Pay attention to the "1" pin (or ESD) identification, according to the correct installation direction plate welding; - 7.7. Heat sink or other heat dissipation measures should be installed to ensure that the shell temperature is lower than the maximum operating temperature specified by the product. The operating temperature range of the product is:-55 °C≤TC≤ 105 °C; - 7.8. Lead welding temperature is less than 300 °C, welding time should not exceed 10 seconds; - 7.9 The heat dissipation surface of the product: either fasten it with screws, or apply thermal paste on the contact surface for heat dissipation; in addition, glue should be applied around the perimeter for fixation. #### Note: - 1. Our products shall be classified and stored according to ISO14001 and relevant environmental laws and regulations after being scrapped, and shall be handled by qualified units; - 2. Except for special instructions, all indicators in this manual are measured when Ta = 25 °C, humidity <75%, nominal input voltage 28V and output rated load; - 3. The test methods of all indicators in this manual are based on the company's enterprise standards; - 4. Our company can provide customized products, specific needs can directly contact our technical personnel; - 5. If the product involves multi-brand materials, please refer to the manufacturer's standards for differences such as different colors. # **DONGGUAN AMCHARD-POWER TECHNOLOGY CO., LTD.** www.amchard-power.com Mail:info@amchard-power.com